
Chapter 2
Software Engineering

Abstract Software engineering is an engineering discipline that is focused on all
aspects concerning the development of software-based systems. This chapter begins
with an explanation of the contributions of software engineering to the issues related
to requirements, discussing the possibility of adopting their methods on projects
of other engineering disciplines. The chapter also characterises the software engi-
neering, identifying and describing the fifteen knowledge areas of the SWEBOK
guide. Additionally, the most relevant characteristics associated with the software
are discussed. Finally, some of the most popular development process models are
presented.

2.1 Contributions for Requirements Engineering

The advances and progresses that were made during the last 40years in the software
and information systemsdomain are,whatever theperspective, extraordinary.Despite
some negative propaganda (for instance, the eternal software crisis or the non-event
that was the year 2000 bug (Y2K bug), there is a huge number of success cases that
changed human daily habits, in a significative or even drastic way. Nowadays, soft-
ware is present not only in traditional personal computers or in highly-sophisticated
supercomputers, used for scientific purposes or for executing governmental activities,
but also in mobile devices, like cellular phones or tablets, or in devices responsible
for routing in computer networks.

The existence of a knowledge area related to software engineering is due to the
growing complexity of the developed systems and to economic factors that prompt
software producers to try to optimise the processes. Therefore, they can gain a com-
petitive advantage to be better positioned in the markets where they operate. All
these issues have influenced the evolution of this area, which started to take shape at
the end of the 1960 decade. There are of course problems associated with software
development and many software projects are not ready on time and cost much more
than was initially planned. It is due to the fact that those problems can occur that one
needs to adopt an engineering approach.

© Springer International Publishing Switzerland 2016
J.M. Fernandes and R.J. Machado, Requirements in Engineering Projects,
Lecture Notes in Management and Industrial Engineering,
DOI 10.1007/978-3-319-18597-2_2

15



16 2 Software Engineering

Software engineering is a discipline composed of theories, methods, approaches,
and tools needed to construct software systems. Software engineering, like the other
engineering branches, needs to base its activity on quality. This implies that every-
thing that is related to engineering, including obviously the developed systems, must
possess quality, in order to satisfy the client. In a simple way, quality is the com-
pliance with the requirements. The main objective of software engineering is to
develop software systems with quality, fulfilling the budget, meeting the deadlines,
and satisfying the real needs of clients by solving their problems.

“The function of good software is to make the complex appear to be simple.”
Grady Booch (1955–), software engineer

To cope with the growing complexity and diversity of real-world problems and
to changes in requirements during the development process, the construction of
systems in the software and information systems domain needs to adopt engineering
approaches, to improve the quality of those systems. This does not imply that the
system is for sure optimal, but that normally it possesses a good quality and is
produced in a controlled way and limited by the available budget.

In this context, over the last years, the software engineering discipline has accu-
mulated an extensive scientific body of knowledge related to the requirements and
their problems. This reality results from the need to control the enormous uncertainty
and the high number of risks normally associated with this domain, due namely to
the intangible nature of the information technologies. Operationally, the success of
projects in the software and information systems domain requires an equilibrium
between the capacity of reading the surrounding reality (environment) and the abil-
ity to socio-technically act upon it. These demands refer to the relationship with the
stakeholders and to the technical decisions associated with the project management.

Basedon this track takenby the software engineeringdiscipline, the dimension and
importance of the scientific community that is focused on the subject of requirements
has grown tremendously. This community adopted the ‘requirements engineering’
concept, understood as the set of activities that in the context of developing a system
allows one to elicit, negotiate, and to document the functionalities and restrictions
of that system.

In fact, the process of characterising a building, automobile, boat, or house con-
tains different aspects than those that are relevant in the process of defining the
requirements of a system in the software and information systems domain. However,
it also includesmany similar issues. Themethods and the techniques discussed in this
book result from the contributions made by the requirements engineering scientific
community. In most cases, those methods and techniques are not exclusive for the
software and information systems domain and can thus be applied in any engineering
project, whatever branch or field.



2.2 Characterisation of the Discipline 17

2.2 Characterisation of the Discipline

Software engineering, as a discipline, can be defined in different ways. In a simple
way, one can say that it corresponds to the application of the engineering principles
to the software development process. This line of reasoning was used by Fritz Bauer,
when in 1968, he defined it as being the utilisation of the basic engineering principles
to obtain, in a economically-viable way, reliable software that runs efficiently in real
computers.

Software engineering is focused on all aspects related to the development and util-
isation of software systems, from the initial steps of specification until maintenance.
There are two software engineering aspects that deserve to be highlighted. On the
one hand, engineers must be able to manage the development and industrialisation
of useful and efficient system. On the other hand, software engineering is not just
centred in the technical aspects associated with the development, but includes also
activities related to managing the development process.

“Leonardo Da Vinci combined art and science and aesthetics and engineering.
That kind of unity is needed once again.”

Ben Shneiderman (1947–), computer scientist

One can also define software engineering as a computer science field that tackles
the construction of software systems whose complexity requires a team of software
engineers to build it (Ghezzi et al. 1991, p. 1). Here, the emphasis is put on the system
complexity and, as happens in all engineering branches and fields, whenever the scale
of the systems is changed, different problems and challenges arise. Some software
systems have a long lifecycle, which explains the reason why they go through several
versions in order tomake sure that they adapt to new realities. The systems developed
within the scope of software engineering are also used by different types of users
and may include gigantic volumes of information.

Small software programs, written and maintained by a single person (the so-
called heroic programmer), are not generally considered sufficiently complex to
demand the use of an engineering approach. It is relevant here to distinguish computer
programming from software engineering, since unfortunately there are still many
persons, some professionally connected to computing, that consider both activities to
be the same. A programmer writes complete software programs. It is very difficult,
even literally impossible, for a single programmer to dominate all the facets of a
software system, since its complexity largely exceeds the human mind capacities
(Booch et al. 2007, p. 8). It is very likely, according to Laplante (2007, p. 4), that
a software engineer spends less than 10% of his time in programming activities,
using the remaining time for the other activities of the software engineering process.
Regardless of the number being totally aligned with the reality, the relevant thing to
understand here is its order of magnitude.



18 2 Software Engineering

Illustration 2.1 A typical software engineering environment, with programmers, software archi-
tects, analysts, testers, and clients

The differentiation between software engineers and programmers is intimately
related to the professional liability and accountability for acts of public trust in tech-
nologic interventions. It has been particularly difficult to convince the society and
the professionals themselves that, in contexts of great complexity, the engagement
of software engineers in the implementation phase is not justifiable to execute pro-
gramming tasks. Software engineers should instead technically coordinate the work
of the programmers.Metaphorically, software engineering is related to programming
in the same way as civil engineering is associated with civil construction.

Software engineering includes also a specific management component that does
not exist in programming. In a small project, with one or two programmers, the
relevant aspects have essentially a technologic nature. In a longer project with a team
composed of many members, it is indispensable to conduct management efforts, to
plan and control the activities of the various professionals with differentiating roles,
such as analysts, architects, programmers, and testers (Illustration 2.1).

In this book, software engineering is defined as the application of a systematic,
disciplined and quantifiable approach in the context of the planning, development
and exploration of software systems, that is, it is the application of engineering to
the software domain. It is under this definition that appears the SWEBOK (software
engineering body of knowledge) guide (Bourque et al. 1999; Abran et al. 2004),
as an important reference to characterise the software engineering discipline. This
guide is the result of an initiative jointly promoted by the IEEE Computer Society



2.2 Characterisation of the Discipline 19

Table 2.1 KAs of the SWEBOK

1 Software requirements 9 Software engineering models and
methods

2 Software design 10 Software quality

3 Software construction 11 Software engineering professional
practice

4 Software testing 12 Software engineering economics

5 Software maintenance 13 Computing foundations

6 Software configuration management 14 Mathematics foundations

7 Software engineering management 15 Engineering foundations

8 Software engineering process

(IEEE-CS) and the Association for Computing Machinery (ACM). The SWEBOK
was created to address the following objectives:

• to promote in the scientific community the existence of a coherent view of software
engineering;

• to clarify how software engineering is related to other disciplines, such as computer
science, computer engineering, project management, and mathematics;

• to characterise the scope and thematic contents of the software engineering disci-
pline;

• to ease the access to the contents of the software engineering body of knowledge;
• to provide a reference for the definition of curricula and professional certifications
in the software engineering discipline.

The SWEBOK guide structures the software engineering corpus according to the
KAs shown in Table2.1. KAs 11–15 were only introduced in third version of the
guide (IEEE 2014).

Next, all the KAs are very briefly presented, to provide a generic idea of the
subjects covered by software engineering. Thus, it is possible to relate requirements
engineering (the main topic of this book) with the other activities carried out in the
context of software engineering.

Most topics detailed in this book fall within the scope of KA1 (software require-
ments). This KA handles the elicitation, analysis, documentation, validation, and
maintenance of software requirements. Requirements are considered as properties
that the systems (still in project) may manifest later after development. The software
requirements express the necessities and the restrictions that are put to a software
system and that must be taken into account throughout its development. This KA is
recognised as having primary importance for the software industry, due to the impact
that its activities promote on stabilising and managing all the development process.

Software design (KA2) is the process where the architecture, components, inter-
faces, and other system (or its components) characteristics are defined. From the
process perspective and within the scope of the software development lifecycle, soft-
ware design is the activity in which the software requirements are handled with the
purpose of producing a description of the internal structure and organisation of the



20 2 Software Engineering

system. From the product perspective, the final result of the process should describe
the system architecture (i.e., how it can be decomposed and organised into compo-
nents), the interfaces between the components, and the components with a level of
detail that permits their construction.

Software construction (KA3) represents the fundamental act associated with
software engineering. It consists in implementing software in accordance with the
requirements and that works correctly, through a combination of coding, validation,
and testing activities. The implementation of software is intimately related to design,
since the former must transform into code the architectures conceived and described
by the latter. This transformation tends to be more and more automatic, since there
are tasks perfectly repetitive and mechanistic. Thus, it is in the software implemen-
tation phase that the utilisation of tools is more critical, to free the engineers from
the less creative and error-prone activities.

Software testing (KA4) constitutes a mandatory part of the software development.
Simultaneously, it is an activity in which one evaluates the software system quality
and enhances it through the identification of the defects and potential problems. Test-
ing includes, for instance, the dynamic verification of the software system behaviour
in comparison with the expected one, using a finite set of test cases, especially chosen
to cover the most critical situations.

Software maintenance (KA5) consists in introducing changes in the software
system, after it was deployed and brought into operation, in order to (1) improve
the system, (2) correct defects, and (3) adapt the system to a new context. The
maintenance phase copes with the defects, the technological modifications, and the
user requirements evolution. It is recommended to prepare maintenance in advance
during the development phases, to ease the tasks that compose it. Although software
maintenance is an area of software engineering, it has received a smaller attention by
the scientific community when compared, for example, with design and construction.

Maintenance can be reactive, when the intervention is dictated by defects observed
in the system, or proactive, whenever the intervention is performed before detect-
ing the defects. In another dimension, maintenance can be oriented towards correc-
tion, which means that one attempts to detect and to repair the defects, or oriented
towards improvement, with the objective of enhancing the system to accommodate
new requirements or contexts of utilisation. The IEEE 14764 standard employs these
two dimensions, as illustrated inTable2.2, to dividemaintenance into four categories:
preventive, corrective, perfective, and adaptive.

“Maintenance typically consumes about 40 to 80% of software costs. There-
fore, it is probably the most important life cycle phase of software.”

Robert L. Glass (1932–), software engineer

Change is inevitable when developing systems, due to new business conditions,
modifications on the necessities of the clients and users, reorganisations of the devel-
opment teams, and financial and time restrictions in the projects. Software configu-



2.2 Characterisation of the Discipline 21

Table 2.2 Maintenance
categories

Correction Improvement

Proactive Preventive Perfective

Reactive Corrective Adaptive

ration management (KA6) aims to identify the configuration of the software system,
in distinct moments of the lifecycle, to systematically control the changes of con-
figuration and to maintain the integrity and traceability of the software system. This
activity can be part of a more extensive process that aims to manage the software
quality. The configuration management process of a given system over time can also
be designated as version/release management. Software configuration management
refers to the activities of control and monitoring that start at the same time as the
project does and that terminate only when the system is no longer used.

Software engineering management (KA7) corresponds to software management
activities (planning, coordination, measurement, monitoring, control, and commu-
nication), to guarantee that the software systems are engineered in a systematic,
disciplined and measurable way. This KA is considerably distinct from the manage-
ment practiced in engineering processes of other branches, due to the specificities
of software and its process, like the intangible and abstract nature of the software
artifacts and the very high rate of technological update that is required in the software
industry.

The software engineering process (KA8) can be seen in two distinct perspec-
tives. In the first one, the process is considered as a set of directives that guide how
the professionals should organise and execute their activities over the project, for
acquiring, developing and maintaining software systems. In the second perspective,
one intends to evaluate and improve the software engineering process itself. Since
the first perspective is already largely handled in the scope of other KAs, it is mainly
within the second perspective that this KA contributes to. This explains why it is also
designated, in a more restrictive way, but that simultaneously better characterises its
focus, as engineering of the software process.

The use of software engineering models and methods (KA9) is fundamental to
allow software systems to be engineered in a systematic, disciplined, quantifiable, and
efficient way. Taking into consideration the abstract nature of software systems, the
models constitute an indispensable tool when taking decisions in all the development
process phases. The methods allow software models and other artefacts to be created
and manipulated throughout the system lifecycle.

Quality must constitute a permanent concern of the engineers, since one expects
engineering systems to possess high quality. The quality is related to the conformity
of the system under development with the requirements. Software quality (KA10)
is an activity that spreads all the software process and that requires the treatment of
non-functional aspects like, for example, usability, efficiency, portability, reliability,
testability, and reusability. The quality in the software must be seen as a transversal
concern to all the software process.



22 2 Software Engineering

“Quality is never an accident. It is always the result of intelligent effort.”
John Ruskin (1819–1900), social thinker

The software engineering professional practice (KA11) has a highly multidisci-
plinary nature and is focused on topics related to professionalism, ethics, law, group
dynamics, psychology, multiculturalism, communication, writing, presentation.

Software engineering economics (KA12) gathers contents of economic nature
related to software systems in a business perspective. This KA includes topics like
economics fundamentals (finance, accounting, inflation, time-value of money), life-
cycle economics (portfolio, price, investment decisions), risk and uncertainty, and
economic analysis methods (return on investment, cost-benefit analysis, break-even
analysis).

KA13–KA15 are related to concepts and foundations of three disciplines that
are critical to the success of the software engineer: computing, mathematics, and
engineering.

2.3 Software

To understand the full scope associated with the software engineering discipline,
it is convenient to figure out what is software, if viewed as an artefact or set of
artefacts that result from the engineering process. In this section, the most relevant
characteristics of software are presented.

2.3.1 Definition of Software

The term ‘software’ is relatively new and, according to Campbell-Kelly (1995), was
used for the first time in 1959. Cusumano (2004, p. 91) says that Applied Data
Research, a company founded in 1959, was the first one selling a software product
separated from the hardware. At the beginning of the popularisation of computers
(1950 decade), it was common practice to sell hardware and software as a unique
system. Software was at that time viewed as part of the hardware and was designated
as ‘programcode’. The emancipation of the software has its origin related to a relevant
fact, from an historical point of view: the decision of american justice to demand
IBM to distinguish, in its accounting documents, hardware and software, providing
separate prices for each one (Buxmann et al. 2013, p. 4), something that has become
reality since the 1970s.

Surprisingly, defining the concept associated with the ‘software’ term is not easy.
A first attempt to define software can be made by a process of elimination. In a
classic perspective, a computer consists of hardware and software and it only works



2.3 Software 23

in a useful way if there is a fruitful and symbiotic combination of those two parts. In
computers that follow a classical architecture, the hardware, by itself, is not capable
of realising useful tasks from the user point of view. In fact, it is necessary to pro-
vide some of the hardware components with a list of instructions (in the form of a
program) that defines the task to be accomplished. Equally, software to be executed
needs a hardware support. Galler (1962) proposes that everything that, in the users
perspective, composes a computer, except the hardware, is the software. Galler’s def-
inition is elegant due to its simplicity and has additionally the advantage of putting
the users as a central element. Additionally, it induces the need to define the con-
cept of hardware, which is not especially difficult to formulate, due to its tangible
nature. The hardware of a computer is composed of electronic and electromechani-
cal components, including, namely, the processor, the memory, and the input/output
devices. The hardware of a computer refers to the material components (integrated
circuits, printed circuit boards, cables, power supplies, plugs, and connectors) and
not to algorithms or instructions.

“Hardware and software are logically equivalent. Any operation performed
by software can also be built directly into the hardware and any instruction
executed by the hardware can also be simulated in software.”

Brian Randell (1936–), computer scientist

A definition of software, elaborated without a process of elimination, is however
necessary. According to Blundell (2008, p. 4), software refers generically to the
programs, which include the instructions that are executed by the computer (more
specifically the hardware), as well as the data that are operated by those instructions.
For Ceruzzi (1998, p. 80), software is simply the set of instructions that direct a
computer to do a specific task.Alternatively, Tanenbaum (2006, p. 8) defines software
of a computer system as being the algorithms (instructions that describe in detail how
to accomplish something) and their respective representations, namely the programs.
A given program can be materialised in different physical means (punched card,
magnetic tape, floppy disk, compact disc, etc.), but its essence resides in the set of
instructions that constitute it and not in the support where it is stored. The software is
the set of programs, procedures and rules (and occasionally documentation), related
to the operation of a system that aims to acquire, store, and process the data. Software
is the abstract element that, together with the hardware, constitutes the automatised
part of a real-world system, implementing a stimulus-answer mechanism, with the
objective of satisfying the needs of an entity external to the system.

An intermediate form between hardware and software is the so-called firmware,
which consists of software embedded in electronic devices during their manufac-
turing. Firmware is used when it is expected, for example, that programs are never
(or rarely) changed or when programs cannot fail in case of lack of power supply.
Thus, firmware is typically stored in non-volatile memory. In some processors, the
operation is controlled by a microprogram, which is a form of firmware.



24 2 Software Engineering

It is important to understand that the most classic view about software, as being
a program that executes in a personal computer, is nowadays far away from being
the only one. Software is an integral and fundamental part of the so-called embed-
ded systems, which are computer-based systems integrated in equipments (typically
electromechanical). In an embedded system, the main actions are performed by the
hardware, but software plays a major role. Embedded systems are developed for a
specific purpose and the communication with the outside world occurs through sen-
sors and actuators. Embedded systems normally run continuously and in real-time.
The software that exists in those system is called embedded software, because it is
integrated in a system that cannot be classified as being of software. For this reason,
embedded software is not sold in an independent way (Kittlaus and Clough 2009,
p. 6). The end users generally do not associate to this software type the same char-
acteristics of the most traditional software. Instead, the users perceive the software
as a set of functions that is provided by the system.

A modern automobile has today a significant percentage of its engineering effort
related to the production of software. Pretschner et al. (2007) indicate that theBMW7
series models implement 270 functionalities which the automobile users can interact
with and that the software, in total, occupies around 65 Mb (65× 106 bytes) of code
in binary language (i.e., the program codified in the language that can be directly
executed by the hardware). These authors predicted that, in 2010, the software of
a top-of-the-range automobile could reach the 1 Gb (109 bytes) figure, but accord-
ing to Ebert and Jones (2009) this fact occurred one year earlier. Cellular phones
are nowadays equipped with much more software than the one that could be found
some years ago in computers of large organisations or corporations. According to
figures indicated by Ebert and Jones (2009), a top-quality mobile phone can posses
1,000,000,000 (109) lines of binary code, the same being true of aerial navigation
systems or with software to control spacial missions. Even less sophisticated devices,
like washing machines, low-end mobile phones, or pacemakers, have approximately
1,000,000 (106) lines of binary code. In factories, there are so many pieces of equip-
ment and processes controlled by tailor-made software systems. The electrical energy
that arrives at homes depends, in large measure, on software that controls its man-
agement and distribution. Due to the fact that the world is becoming more digital at
various levels, the examples are almost endless, due to the omnipresence, sometimes
unnoticed, of systems with software in the modern societies.

“The future lies in designing and selling computers that people don’t realise
are computers at all.”

Adam Osborne (1939–2003), computer engineer

The first characteristic of a software system, that distinguishes it from other engi-
neering systems, is its intangible nature. A software system is not a concrete and
material entity, that is, it has no physical existence, contrarily to what happens with
most systems from the other engineering branches (civil, mechanical, naval, chem-
istry, electrical). The software is not restricted by the materials properties, nor ruled



2.3 Software 25

by the laws of physics. Ghezzi et al. (1991, p. 17) indicate that software is soft, since
it is relatively easy to change it. The softness of software, which is explicitly reflected
in its name, results from its condition of intangible system. This characteristic has
been, however, the cause of some of the problems associated with software develop-
ment, since the changes imposed are often made without a careful analysis in terms
of schedule, cost, quality, and impact.

Due to its intangible nature, software is developed, but not fabricated or con-
structed in the classical meaning of the term. In this book, a company that develops
software and where many software engineers work is designated as a software pro-
ducer. Often one uses ‘software supplier’, as a synonym, although this designation
may have a more commercial connotation, since the one that supplies (i.e., sells,
rents, lends, offers) something is not always the one that fabricates it.

Due to the intangible nature of software, in reality producing the first replica
of a software system implies high costs, but the subsequent replicas are produced
at much lower (in some cases, insignificant) costs. Additionally, copying software
is an extremely easy operation, from a technical point of view, and that does not
introduce loss of quality, since in the digital world one can consider that there are
no differences between the original and the replicas. Due to these facts, the cost of
software is essentially determined by the cost of the human resources necessary to
develop it.

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys
the Second Law of Thermodynamics; i.e., it always increases.”

Norman R. Augustine (1935–), aeronautical engineer

A second characteristic of software is related to the fact that supposedly it does
not wear out, in the sense that it does not lose its qualities over time. Although soft-
ware does not wear out, in the physical sense of the term, it exhibits an enormous
deterioration or degradation, derived essentially from the alterations that are intro-
duced with the aim of maintaining its usefulness. Actually, the incorporation of new
functionalities implies, almost inevitably, the introduction of defects in the software,
which means that it eventually loses quality during its lifecycle.

2.3.2 Software Systems and Products

As already indicated, a system, in the context of engineering, is an identifiable and
coherent set of components that cohesively interact to achieve a given objective.
This definition permits that almost everything that exists in the universe can be seen
as a system, which turns out to be true, since it is difficult to imagine something
that could not potentially be viewed in a systemic perspective. Maybe an electron, if
considered as an elemental particle (without components), could not be viewed as a
system. However, for the engineer, what matters is not knowing whether something



26 2 Software Engineering

is a system or not, but instead if that thing is viewed by him as a system (Thomé
1993). This happens because the engineer has an interest in studying the properties
of that entity as a system. It is the engineer that defines the frontier of the system
with the environment, which makes the system definition not intrinsic to it, but rather
dependent on the particular purposes and intentions of the engineer in each situation.
As a consequence, the components that in a specific context constitute a given system
may be just a subsystem of a wider system in a different context. The term ‘system’
is used here in a comprehensive way, including concepts like structure, machine,
product, process or service. Terminological variants such as apparel, appliance, arte-
fact, equipment, gadget, installation, instrument, object and organisation, may also
be used for designing systems.

Here, two criteria are proposed to classify software systems (software-dominated
or software-intensive systems): ‘what is sold’ and ‘number of copies’ (Xu and
Brinkkemper 2007). Crossing these two criteria gives origin to the types of soft-
ware systems shown in Fig. 2.1.

Whenever the final customer buys a given appliance that includes software, this
is normally designated as embedded software. This term is used, either for a unique
appliance (for instance, a satellite or a spaceship), or for devices produced in large
numbers (for example, television sets or mobile phones). These devices correspond
to heterogeneous systems (that include parts with different technologies), rarely
being referred to as ‘software products’, even in the cases where the software parts
correspond to themost important technological dimension of the system.Gadgets like
digital cameras, smart phones, or printers are generically called ‘consumer electronics
products’, in spite of including significant portions of software. The comparison
factor is here the complexity of the technological effort. In the case of heterogeneous
systems with software when viewed as products, the devaluation of the software
technology results from the typical focus of the end users on the mechanical or
electronic parts that exist in those tangible products, rather than on the software
parts. Based on a mathematical analogy in relation to the product designation, in a
heterogeneous system, the software corresponds to the neutral element and never to
the absorbing one.

Whenever the software system uses exclusively software technologies (i.e., some-
thing that can be designated as a pure homogeneous software system), then there are

Fig. 2.1 Classification of
software systems

one several

number of copies

ap
pl
ia
nc
e

so
ft
w
ar
ew
ha
ti
s
so
ld

embedded software

taylor-made

software system
software
product



2.3 Software 27

Illustration 2.2 A software product

two different types of systems. If the system is developed by request of a given client
for satisfying his own necessities and expectations, then it is referred to as tailor-
made software system (also called custom software system or bespoke software
system). In this case, the principal objective is to satisfy the particular and specific
needs of that client, without caring if it is equally useful for other clients.

If a software system is produced to be commercialised for, or made available to,
the public in general, then it is designated as a software product, also called mass-
market product. Generically, a product is a combination of (material and immaterial)
goods and services that the supplier combines, in accordance with his commercial
interests, to transfer established rights to the client (Kittlaus and Clough 2009, p. 6).

“I already am a product.”
Lady Gaga (1986–), singer

According to this perspective, a software product refers to a homogeneous soft-
ware product, being composed of the following three elements (Illustration 2.2);

• programs, whose instructions when executed offer the functionalities of the prod-
uct;

• data structures that permit programs to access the necessary information for their
execution;

• documentation that explains how to install, use, and maintain the programs.



28 2 Software Engineering

Here, one defines a (computer) program as a text, written in a symbolic language
capable of being interpreted by a computer, and composed of a set of operations that
operate on the data and that obey the controls that stipulate the execution moments.
This perspective of product is essentially technological, since it considers that the
persons are not part of it, contrarily to what happens in the information systems with
a socio-technical nature, in which are included the persons, as performers of parts of
the organisational processes.

In business contexts, the development of a software product aims to obtain the
highest possible number of customers, in the scope of the market segment that is
identified for its commercialisation. The software producer has frequently the objec-
tive of selling massively, to maximise the respective market share and the economic
incomes. Hence, a software product is developed in conformance with the common
denominator of the necessities of the different users. If there is a tiny set of users that
have a specific need, it is very likely that that need will not be included in the product.
In any case, an underlying difficulty to develop a software product results precisely
from not knowing in advance (i.e., during development time) who will use it.

“Before new products can be sold successfully to the mass market, they have
to be sold to early adopters.”

Eric Ries (1979–), entrepreneur

One can also classify software products in relation to the proximity that they
have in relation to the hardware. Generically, two types of software products1 can be
considered: (1) system software responsible for managing the hardware resources of
the computer; (2) the software applications that perform tasks that are useful for the
end users.

A system software is composed of programs that interact in an intense and direct
way with the computer hardware. Thus, it is normal that system software is not
explicitly used by the end users. This type of software includes the operating systems,
utilities to monitor the resources (to analyse, configure, and optimise the computer),
device drivers and network software (web servers, email servers, network routers).

A software application (or software app) is a software product developed to
support the realisation of the individual tasks of the persons and the execution
of the organisational processes (government, industry, commerce, services). These
applications to be executed use a computer (hardware) and a system software, for
instance, an operating system. Therefore, one can say that, from the users point of
view, they are (well) above the hardware level. These applications are essentially
seen as productivity tools, that is, tools to enhance the human or organisational capa-

1Middleware could be considered as a third type, but in this book, a simpler solution was adopted.
According to this first criterion, middleware is basically a generic designation used to refer to the
software that executes between the system software and the software applications. The objective
is to promote an easy development of distributed applications, since middleware serves to transfer
informations and data among programs.



2.3 Software 29

bilities. The software applications help people in various tasks, like editing texts,
preparing budgets, storing and searching information, drawing graphics and tables,
performing calculations and an infinity of other things. Nowadays, software appli-
cations are no longer limited by hardware-related aspects, but instead by the human
imagination and by cost restrictions and user habits (Cusumano 2004, pp. 280–281).

“The aim of marketing is to know and understand the customer so well the
product or service fits him and sells itself.”

Peter F. Drucker (1909–2005), management consultant

There are some aspects that distinguish the tailor-made software systems from
the software products, namely those related to the origin of the necessity that led to
their development. That necessity may come from an individual person or from the
market (Wieringa 1996, p. 34). In tailor-made software systems, the origin is clear,
since development occurs after an explicit manifestation of the necessity, made by
the potential client, to support the realisation of individual tasks or the execution of
organisational processes. The development effort related to software products can
be initiated, regardless of an explicit manifestation of the necessity by the potential
clients. It is common that the necessity is identified by marketing experts, based
on market studies and analysis of consumption trends. For tailor-made software
systems, only one unique instance is usually made available, whilst for software
products it is necessary to produce various installations for exploration by different
clients. The software industry is a business area with a high return on investment,
wheremaking a unique copy of a software product or several thousands costs roughly
the same (Cusumano 2004, p. 15). This reality allows the investments in software to
have the potential to result in substantial profits, as also happens in the film, music,
and pharmaceutic industries. However, the development of a software product has
normally a relatively high fixed cost that is not recoverable, if the product is not a
commercial success.

In some cases, it is difficult to classify a software system. For example, ERP
(enterprise resource planning) software products, like the SAP ERP or the Microsoft
DynamicsNAV, are generic, but can be configured to respond to specific requirements
of a given client. Despite the referred terminology, the differences between a software
system, a product and an application are often not significative, which means that the
three terms are practically used as synonyms. A tailor-made software system can be
transformed into a software product, through the generalisation of the functionalities
it offers. The contrary is also true, that is, a software product can be adapted to satisfy
the particular requirements of a given client. For this reason, in this book, the three
terms are, in many situations, used for representing software artefacts, with high
complexity and whose development requires approaches, methods, and tools from
the software engineering sphere.



30 2 Software Engineering

2.3.3 Domains

Engineering systems are developed due to the existence of some necessity of the
stakeholders that must be satisfied. The area in which the system is explored is
designated as domain. It is necessary to precisely characterise what is its meaning,
since this word has different meanings, as a function of the context where it is used.
Generically, a domain can be considered as a business area, collection of problems,
or knowledge area with its own terminology. Within this book, a domain is an area
of human knowledge or activity that is characterised by possessing a set of concepts
and terms that the respective players know.

Examples of domains are telecommunications, transports, health, agriculture,
industry, retail, banking, insurance, education, entertainment, cinema, and theatre.
Domains can involve the physicalworld (for instance, a library involves themanipula-
tion of books) or can be intangible (for example, schedule management). Generally,
the domains have no relation with computers, although there are exceptions (for
example, hardware commerce or source code management). The domains where the
software technology can be present are only limited by the human imagination.

It is not obligatory that, before initiating the development of a system in a given
domain, the requirements engineer has any knowledge about that domain. Obviously,
it is desirable that she is at least comfortable with some of the basic concepts of the
domain, so that he can speak in an comprehensible way with the system stakehold-
ers. Over the project, the requirements engineer must increase the knowledge that
he possesses about the domain, even as a mechanism to make sure that the devel-
opment team takes into account the client’s perspective. Some software producers
are specialised in a given domain, in order to gain a competitive advantage with
respect to their competitors. Although this approach reduces the potential market,
the solid knowledge on the respective domain permits more specialised systems to
be developed, thus offering a better answer to the users needs.

In relation to a given system, it is common to refer to two distinct domains: the
problem domain and the solution domain. The problem domain is the context where
one feels the necessities that need to be satisfied by the system to be developed. For
instance, in the case of a restaurant, the problem domain includes the elements that
characterise it: clients, cooks, tables, chairs, towels, cutlery, crockery, meals, etc. If
the problem domain is an airline company, then one can see, for example, airplanes,
pilots, stewards, passengers, suitcases, and tickets. The persons have technical or
business problems that can be solved with the engineers contribution. The aim of
the requirements engineers consists in understanding what are the problems of those
persons, in their language and culture, so that one can construct systems that satisfy
the necessities of those persons (Leffingwell and Widrig 2000, p. 19). The solution
domain refers to the activities that are executed and the artefacts that are handled and
constructed to solve the problem.



2.3 Software 31

Davis (1990, pp. 29–32) classifies the software systems domain along five orthog-
onal axes:

1. difficulty of the problem class;
2. temporal relationship between data and processing;
3. number of tasks to be executed simultaneously;
4. relative difficulty of the data, interaction, and control aspects of the problem;
5. determinism level.

“If there is no solution to the problem then don’t waste time worrying about it.
If there is a solution to the problem then don’t waste time worrying about it.”

Dalai Lama XIV (1935–)

The problem class is about how the real problem (i.e., the problem felt by the
stakeholders in the context of the problem domain) can be framed into the conceptual
problem that covers it and that may have been previously studied and analysed by
experts. For example, the real problem of a logistics company that aims to define
routes that minimise the delivery times and fuel expenses can be framed into a more
conceptual problem, like the travelling salesman or Chinese postman problems. The
difficulty of the problem class can be divided into two groups. The difficult problems
are those that were never solved or that do not have any satisfactory solution. The not-
difficult problems are all the others, that is, those that have been previously resolved
in a reasonable way.

With respect to the temporal relations that exist between the availability of the
input data and its processing, there are also two classes. In static applications, all the
inputs must be available before the application processes them. In dynamic appli-
cations, the input data arrive continuously during the processing, therefore having
an effect on the results. Compilers are typically static applications, while interactive
systems are examples of dynamic applications.

A third alternative of classification is related to the number of tasks that the sys-
tem can simultaneously handle. Sequential applications manipulate a single task at
a time, while parallel applications, from the users’ perspective, must be capable of
processing several tasks in simultaneous. The most difficult aspect related to the
externally observable behaviour of the system to address constitutes another classi-
fication axis. It includes three cumulative dimensions that can be considered: data,
interaction, and control. In a data-centred application, the type, organisation, and
persistency of the data that support that application are the most critical aspects to
consider. In interactive applications, the most difficult aspect to handle is how the
environment and the system interact by exchanging and presenting information. In
applications with a strong algorithmic component or decision taking, the primary
aspect is the relation that is established between the system inputs and outputs, forc-
ing or permitting the control levels caused by the exchange of information with the
environment. These three alternatives are not mutually exclusive, since it is possi-
ble to observe significative manifestations of these three types of behaviour in the
same system.



32 2 Software Engineering

A last axis of classification refers to the predictability of the system outputs as a
response to the inputs. In deterministic systems, one expects the same results to be
produced for the same set of inputs. For example, a scientific calculator must always
provide the same result for the same inputs. Non-deterministic systems provide
answers that are not absolutely clear. It is possible that different outputs can be
accepted as valid. For example, a software application to play chess can, in each
move, opt for any of the various valid alternatives. There will be certainly some
moves that are better than others, but that evaluation has not a unique answer, in the
generality of the cases.

2.4 Models for the Development Process

The software process can be executed in different ways and according to different
approaches. A process model represents a development process and indicates the
form in which it must be organised. The process models aim to help the engineers
in establishing the relation among the activities and the techniques that are part of
the development process. Whenever the development process is modelled, one can
reap the benefits that result from the systematisation and identification of the best
practices, to allow systems development in an efficient, reliable, and predictable
way. With the development process systematisation, through the definition of the
respective model, one tries to reach the following objectives:

• to clearly identify the activities that must be followed to develop a system;
• to introduce consistency in the development process, ensuring that the systems are
developed according to the same methodological principles;

• to provide control points to evaluate the obtained results and to verify the obser-
vance of the deadlines and the resources needs;

• to stimulate a bigger reuse of components, during the design and implementation
phases, to increase the productivity of the development teams.

The difficulties faced by the software development teams and, more specifically,
their managers lies in defining processes that promote the utilisation of management
mechanisms that keep the projects under control. The challenge here is not blocking
the necessary creativity and flexibility that is required so that the system at hand can
adapt to changes both in technology and the users needs.

The next subsections present and characterise the most fundamental process mod-
els. To completely describe a process, several facets should be considered: the activi-
ties (set of tasks that must be executed to develop the system), the artefacts (results of
the activities), and the roles (responsibilities of the persons engaged in the process).
In themajority of the cases, this book presents, in a graphical form, only the activities,
leaving for the textual part the discussion of the other facets whenever necessary.



2.4 Models for the Development Process 33

analysis design
implemen-

tation
testing

Fig. 2.2 The waterfall process model

2.4.1 Waterfall

The oldest software development process model is designated as the waterfall model.
As Fig. 2.2 depicts, it is composed of a sequence of phases, namely analysis, design,
implementation, and testing. The use of the ‘waterfall’ word aims to evince the
irreversibility whenever one progresses from one phase to the next one, as well
as the risk associated with the process execution. The most relevant characteristic
of this process model is the strong tendency for the development to follow a top-
down approach (from the most abstract to the most concrete) and, in a high-level
perspective, the strictly-sequential progression between consecutive phases (Yourdon
1988, pp. 45–47).

During the analysis phase, the functioning of the system is specified, through
the identification of the various requirements that must be considered. The docu-
ment that contains the specification serves as a basis for the next phases, so, ideally,
one should use implementation-independent notations and allow all stakeholders to
clearly understand (i.e., without any ambiguities) what are the intended functionality.

Once the document that specifies the system under development is accepted,
the design phase, which consists in transforming a specification into an architecture,
begins. According toBosch (2000, p. 230), themost complex activity during software
development is precisely the transformation the requirements into an architecture.
Generically, this phase is divided into two steps. The first one, designated as architec-
tural design, describes how the system is constituted and is, in many cases, one of the
most creative tasks in all the development process (Stevens et al. 1998, p. 88). In this
first step, an architecture must be established, by identifying the system components
and possible restrictions in their behaviour. This architecture determines the internal
system structure, defined based on the entities that compose it and in the relations
among them. Whenever the architecture is defined, the second step, designated as
detailed design, establishes in detail the components, in order to include enough
information to allow its implementation. Sometimes, one considers the existence of
a step, called the mechanistic design, that relates the decisions taken in the architec-
tural design and in the detailed design, through the detailed study of the mechanisms
that provide the architecture with the expected behaviours for the system.

In the design phase, the principal objective is to structure (i.e., to define the
architecture of) the system at hand. For example, an object-oriented design includes
the object-oriented decomposition process, using an appropriate notation to describe
all the (logical or physicals and static or dynamic) aspects related to the system
(Booch et al. 2007, p. 42). In a system conceived according to the object-oriented



34 2 Software Engineering

paradigm, the respective structure is dictated by the objects that compose it and the
relations that are established among them.

The principal difference between the analysis and the design phases is that while
the former produces an abstract model that mimics the fundamental aspects of the
existing needs in the problem area, the latter creates a model that specifies the com-
ponents that structure a particular system solution. In other words, the analysis phase
defines the system functionality (what to do), while the design phase stipulates the
architecture (how to do) that the system must present so that the expected behaviour
is obtained.

Despite the many methodological and technological advances that have occurred
in the last years, the software is often developed in an handicraft way. The software
industry is still far from reaching a point where there is, in fact, an entire catalogue
of software components able to be easily and directly integrated in the systems.
In software engineering, the development of all the parts of a system is not only
generally accepted but also often encouraged, with the argument that this is the only
way to build the system with the intended quality. This argument is called the not
invented here (NIH) syndrome Lidwell et al. (2010, pp. 168–169). Such scenario
would be, nowadays, unthinkable in other industries. Fortunately, there are many
mechanisms, such the component libraries, frameworks, application programming
interfaces (APIs), design patterns, which provide very significant advances in this
area. Web applications constitute an important niche, where the use of reusable
components, like web services, is quite common.

The implementation (codification or programming) phase transforms the models
defined in the design phase in executable code. This transformation involves the
definition of the internal mechanisms so that each component can satisfy its specifi-
cation and the implementation of those mechanisms with the chosen programming
language (Zave 1984). The implementation phase is considered by many authors,
for instance, Hatley and Pirbhai (1987, p. 10), Rumbaugh et al. (1991, p. 278) and
Whytock (1993), as a a purely mechanical, simple, and direct task, after the most
intellectual and creative work has been performed in the analysis and design phases.
The implementation phase is thus a serious candidate to be automated, if one can
rely on tools that permit us to indicate how the final code can be generated from
the specifications obtained in the previous phases. However, reality has shown that
it is not always so easy to pursuit with this phase. Object-oriented programming
allows systems to be implemented, organised as collections of objects. Each object
is an instance of a class and each class is a member of a structure where there are
hierarchical relationships.

While in the development of non-complex systems, the effort devoted to the
analysis and design phases can be residual (when compared with the effort in the
implementation phase), for complex systems the effort devoted to issues related
to analysis and design is of vital importance. Actually, the popularisation of tools,
which automatically produce code from specifications, allows one to say that the
point where “the specification is the implementation” is about to be reached. The
essence of developing systems becomes thus focused on decisions related to the
analysis and design phases.



2.4 Models for the Development Process 35

Evenwhen the engineers carefully follow development processes and approaches,
the artefacts that result fromdevelopment activitiesmay still contain defects. To avoid
these possible defects, the systems must be tested. Testing has two main objectives:
(1) to show that the system under development does what it is expected to do, and
(2) to allow defects in the system to be discovered.

“If debugging is the process of removing software bugs, then programming
must be the process of putting them in.”

Edsger W. Dijkstra (1930–2002), computer scientist

The term ‘testing’ encompasses a very large set of activities that go from testing a
small piece of code by the programmer (unit testing) up to the validation, by the client,
of a software system (acceptance testing). To distinguish some of these activities,
the community adopts the terms ‘verification’ and ‘validation’. By verification one
means the process throughwhich it is ensured that the systemwas built in accordance
with the requirements and the specifications. The verification can be achieved through
dynamic approaches, in which the run-time behaviour of the system is checked, or
static ones, where one analyses and inspects any system-related artefact or document
(Ghezzi et al. 1991, p. 260). The aim of validation is to make sure that the system
satisfies the necessities and expectations of the users and the clients.

The testing phasewas traditionally executed at the end of the development process.
The program code was totally written, before executing any function testing. How-
ever, this vision needed to be changed, as soon as it was clear that testing is more that
just debugging code. Software testing, if well performed, can result in huge econom-
ical benefits. Nowadays, testing complex software takes around 40% of the devel-
opment costs (Ebert and Jones 2009; Sommerville 2010, p. 6), which demonstrates
the growing importance that it has in the software engineering context. Actually, the
success of software testing depends on the planning of its execution and its effec-
tive realisation in the initial development phases. If quality of a software system is
strongly dependent on the quality of the adopted development process, similarly, the
quality and effectiveness of testing are largely determined by the quality of the testing
process (Kit 1995, p. 3). Software testing has its own lifecycle, which is realised at
distinct levels: it starts at the same time as the requirements elicitation and, from that
point on, follows in parallel with the development process. In other words, for each
phase or activity of the development process, there is an associated testing activity,
as Fig. 2.3 depicts (Robinson 1992, p. 3). This figure, which represents the V process
model, can be viewed as a refinement of the waterfall model shown in Fig. 2.2.

The first level of testing (unit testing or unitary testing) takes place as the diverse
components (units) are implemented. The objective is to verify if each component
in isolation works as expected, using the decisions taken in the detailed design as
reference. When the components pass the unit tests, the following step is the com-
ponent integration testing, whose purpose consists in guaranteeing that the inter-
faces between the components have the behaviour estimated during the architectural



36 2 Software Engineering

analysis

architectural
design

detailed
design

implementation
unit

testing

component
integration
testing

system
integration
testing

acceptance

testing

Fig. 2.3 The V process model

design. Next, the system integration testing permits one to verify if the software
system, as a whole, satisfies the requirements indicated in the analysis phase. The
two types of integration tests indicated can be very demanding activities in terms of
resources and time, especially for critical systems. Finally, the acceptance testing
is executed jointly with the end users that validate the operation of the system with
respect to their expectations, in the light of what has been contracted. Some testing
activities can be automated, partially or even totally, and that possibility depends on
the notations used in the analysis and design phases.

All these phases (analysis, design, implementation, and testing) are related among
them and none should be neglected during the development of a given system. How-
ever, the division among these phases is not always so explicit as it was indicated
up to now. For example, in the object-oriented methodologies, there is normally an
overlap in the tasks covered in the analysis and design phases, since the separation
between those two phases is more theoretical than real, being very difficult to define
the respective frontier (Booch et al. 2007, p. 131). This fact can be interpreted as a
disadvantage, but a positive perspective is also possible, meaning that the transition
between those phases is made in a natural and soft way, when an object-oriented
decomposition is followed.

Thewaterfallmodel, due to its conceptual simplicity is still oneof themost referred
software development processes, despite the various problems that it presents and
the many alternatives that were proposed. The waterfall model is considered too
inflexible and produces satisfactory results only when the requirements are clear and
the chances of being changed too low. To develop, for instance, a compiler, based
on a grammar completely defined and which is not likely to be changed, this model
seems to be perfectly adequate (Ghezzi et al. 1991, p. 374).



2.4 Models for the Development Process 37

However, the waterfall model, is based on documentation as a criterion to decide
when a phase is finished and the next one can start, which requires complete doc-
uments to be written. This fact is extremely negative, in projects where the ideas
and the necessities of the stakeholders are not yet totally clear, since it forces all the
requirements to be decided very early. This fact probably introduces errors thatwill be
spread to the design and implementation phases. Unfortunately, those errors are only
detected when the implementation is finalised, usually quite after the specification
of the requirements.

The processes that follow the waterfall model tend to be accomplished according
to a plan in which generically the requirements are specified completely, so that one
can subsequently design, construct, and test the system. The waterfall model, despite
allowing the process to be executed in various iterations, is essentially characterised
by following a process with a significant level of bureaucracy and ceremony.

In practice, the order in which the phases are executed is difficult to capture
precisely, because it is not necessary that a phase finishes totally for the next one to
be initiated. This fact is contrary to what the waterfall model theoretically proposes.
Usually, the results that are obtained in a given phase are used for correcting the
results of the previous phases. Thus, the processes should be iterative in practice,
since problems identified in more advanced phases of the project force the previous
phases to be revisited.

2.4.2 Incremental and Iterative

In development contexts, where themarket is extremely accelerated and vibrant, with
new opportunities arising at very fast rhythms, the waterfall process is very inade-
quate. The incremental and iterative model is based on the characteristics of the
waterfall model, introducing however iterations to permit an incremental develop-
ment. As Fig. 2.4 illustrates, this process model applies linear sequences of develop-
ment in a phased way. Each linear sequence produces as result a functional increment
of the system. For example, the construction of a text editor could proceed through
the following iterations:

• in the 1st iteration, one develops the functions to manipulate files (open, save,
close, print) and the basic functionalities for editing text (insert, delete, select);

• in the 2nd iteration, one includes more advanced edition capabilities (search and
replace text, fonts, bold, italics);

• the 3rd iteration allows the inclusion of figures, tables, and graphics in the docu-
ments, by providing new commands that manipulate those elements;

• in the 4th iteration, new functionalities that permit the use of thesaurus and auto-
matic spellers are added.



38 2 Software Engineering

analyse design implement test

1st iteration

analyse design implement test

2nd iteration

analyse design implement test

3rd iteration

Fig. 2.4 The incremental and iterative process model

“You should use iterative development only on projects that you want to
succeed.”

Martin Fowler (1963–), software engineer

The incremental and iterative model is based on the idea that it is easier to create
a simple artefact than a complex one and also that it is simpler to modify an existing
artefact than to create a new one from scratch. Hence, instead of trying to completely
construct the system in a unique cycle, the attention at the beginning is deliberately
focused on incorporating the most critical and important aspects (or those that are
more clearly mastered). Afterwards, new aspects can be progressively incorporated,
until the system is complete.

The incremental and iterative process is, in its essence, repetitive, i.e., the func-
tionalities are gradually added and improved until the system is fully handled. Each
increment represents a part of the system functionality.

Agile methods for developing software can be framed within this type of process
model. They appeared, in the 1990decade, as an alternative to the traditionalmethods,
dismantling many of the assumptions associated with the latter. The accelerated
dynamics in various domains and businesses make impossible, from a practical point
of view, obtaining a set of stable requirements, since they are subject to constant
and unexpected changes. Agile methods seek to position themselves as an adequate
alternative for these highly unstable scenarios. For that purpose, they follow four
fundamental principles, established by Beck et al. (2001), which, despite recognising
value and utility to the items on the right, give prevalence to those on the left:



2.4 Models for the Development Process 39

individuals and interactions vs. processes and tools
working software vs. comprehensive documentation
customer collaboration vs. contract negotiation
responding to change vs. following a plan

Agilemethods aim essentially tominimise the risk associatedwith software devel-
opment, defining for suchvery short development cycles, called iterations (or sprints).
They are incremental and iterative development methods, in which the cycles last
between one and four weeks. An agile software project aims to produce, at the
end of each iteration, a new version/release of the system, that is, a version that is
executable, that works correctly and that provides value to the client. Hence, each
iteration includes a cycle with all the tasks necessary to concretise the inclusion of
the new functionalities: requirements engineering, design, implementation, testing,
and documentation.

“What is the difference between method and device? A method is a device
which you used twice.”

George Pólya (1887–1985), mathematician

At the end of each iteration, the team reevaluates the requirements and can intro-
duce alterations. This practice permits that set of requirements to be changed, through
the inclusion of new requirements and the elimination or change of requirements pre-
viously identified.Additionally, the priority of each requirement can be changed. This
reevaluation of the requirements implies that they can be effectively changed, during
the project, thus increasing the utility and value of the system for the stakeholders.

Agile methods lie in the real-time and, if possible, face-to-face collaboration
among the development team, the clients and the users. This collaboration allows
the team to discuss the project scope, analyse and prioritise the requirements, and
decide the options to be taken. Thus, it is not so critical the existence of written
documents to support the development tasks. Actually, most agile software projects,
in comparison with other approaches, produces less voluminous documentation.

2.4.3 Transformational

Although they are not yet a generic solution for all types of systems, mathematical
methods (typically designated formal methods) offer the very attractive perspective
of generating software with no defects. The use of formal methods presupposes a
transformational process that assumes the existence of tools that automatically con-
vert a formal specification into a software program that satisfies that specification.
This process implies that the changes are reflected in the specification, thus eliminat-
ing the problem of getting spaghetti code, i.e., code that gradually becomes poorly
structured, as a consequence of being successively modified.



40 2 Software Engineering

Fig. 2.5 The
transformational process
model

define
requirements

formally
specify

transform
specification

verify

specification

Figure2.5 illustrates the transformational process model that is composed of four
main tasks. In the first task, requirements are elicited, with a set of techniques that
are considered adequate. Based on the requirements, a formal specification is created
and is progressively developed, until an executable version is obtained. This charac-
teristic means, in this context, that the specification can be processed, from which
results a program that can be executed. An executable specification is more that the
mere static model that defines the system behaviour and should allow the verifica-
tion of the behavioural properties. Some of the benefits observed in the utilisation
of executable specifications, in several large-scale projects, are described by Harel
(1992). If some non-conformity is detected during the verification, the specification
should be modified, in order to eliminate that problem, and verified again. This cycle
repeats the necessary number of times until the specification is in accordance with
the requirements.

“It is easier to change the specification to fit the program than vice versa.”
Alan J. Perlis (1922–1990), computer scientist

The specification is used to obtain, through automatic transformationmechanisms,
parts of the final programwith the efficiency levels specified in the requirements. The
process of transforming the specification is controlledby the software engineer,which
thus can vary the characteristics of the program, taking into account, for instance,
the non-functional requirements. This process model becomes efficient and useful,
if there is an environment that provides tools to automatically support the various
activities, especially those to transform the specifications into the program.

The specification changes are considered as a part of the process. Contrarily, in
a waterfall process, changes are seen as reparations, since their occurrence is not
considered beforehand. From here it results that changes are made under big pres-
sure, normally at the end of development, implying often that the changes are made
modifying directly the code, without reflecting them in the specification. Hence, the
specification and the implementation diverge one from the other, making any future
changes more difficult to accomplish. This situation does not occur in a transfor-
mational process, since the process executed to develop the software system and
the respective decisions (intermediate steps, based on mathematical proofs) for each



2.4 Models for the Development Process 41

transformation are registered, whichmakes it possible to restart, from an intermediate
point, the transformation of the specification into an implementation.

Despite the growing maturity that the formal methods have acquired, their util-
isation is not yet disseminate in a pervasive way, being its application restricted to
well-identified areas. Among the disadvantages of their utilisation, one can find the
long development time, the difficulty in using the specifications as a medium of com-
munication with the clients, and the need to resort to specialists to manipulate the
mathematical specifications. This last argument should not be taken literally, since
some formal methods employ concepts familiar to any engineer. More recently, the
model-based development approach resort to the transformational principles of the
formal methods, but it adopts models closer to the implementation languages (than
the strictly-mathematical approaches), as a way to make viable the transformational
approach in large-scale real projects.

2.4.4 Spiral

The spiral process model (Boehm 1988) is based on a risk-driven approach and not
on documents or the code. In this context, a risk is a potentially adverse circumstance
that can have negative or perverse effects in the development process and in the final
quality of the system. A risk is a measure of the uncertainty of achieving an objective
or meeting requirements. The spiral model centres its action in the identification and
elimination of problems with high risks.

The various tasks are organised in cycles, as Fig. 2.6 documents. Each cycle of
the spiral is constituted of four main tasks, being each one represented by a quadrant
of the diagram. The radius of the spiral represents the progress in the process and
the angular dimension indicates the accumulated cost in the process.

In the first task of the cycle, one identifies the objectives (performance, function-
ality, easiness of modification, etc.) for the system under development, with respect
to the quality levels to be achieved. It is also relevant to identify the alternative means
of implementation (develop A or B, buy, reuse, etc.) and the restrictions that must

Fig. 2.6 The spiral model
identify and
solve risks

develop
and test

determine
objectives

plan the
next iteration



42 2 Software Engineering

be assumed to materialise one of those alternatives. In the second task of the cycle,
one evaluates the alternatives previously identified with respect to the objectives
and restrictions, which frequently implies the identification of uncertain situations
that represent potential sources of risk. To proceed with this identification, one can
resort to different techniques, like prototyping, benchmarking, simulation or ques-
tionnaires. During the third task, one should develop and verify the system for the
next cycle, based again on a risk-oriented strategy. In the fourth and last task of the
cycle, the obtained results are reviewed and the next spiral cycle, if that is the case,
is planned.

“The basic problem of software development is risk.”
Kent Beck (1961–), software engineer

Whenever the requirements of a system are reasonably well known, a waterfall
process can be followed, which means that only one spiral cycle is fulfilled. For
systemswhose requirements are less clear, several cyclesmay be necessary to achieve
the intended results, from which results an incremental and iterative process.

As special cases, the spiral model includes the process models presented in this
section. It allows the choice of the best combination and composition of those process
models for each situation in which it is applied. Therefore, the spiral model can be
seen as a meta-model, i.e., a reference model to instantiate different process models.

2.5 Summary

Software engineering is an engineering discipline focused on all the aspects related
to the development and production of software. The software engineer, as any engi-
neer, is responsible for the development process and production of artefacts that are
to be used by third-parties. Software engineering addresses the development and
production of software systems made by teams constituted by several professionals.
This implies that software engineering is not just centred in the technical aspects
associated with software development, but includes also process management activ-
ities. Software engineering brought to the computer science field the junction of the
development processes and methods with economic and management issues. These
questions are indispensable for the professionals that actuate in the industry with
roles and responsibilities that go behind the mere computer programming.

The software engineering body of knowledge is structured into 15 KAs according
to the SWEBOK guide. Software engineering is a scientific area with an extremely
important economic and social relevance and that has allowed people to observe
many of their daily tasks solved in a faster, more comfortable, and more economic
way. This success benefits from the capacity of software engineering to adapt to the



2.5 Summary 43

enormous demands that nowadays their professionals are subject to. They have to
handle all the software production process issues, but simultaneously possess the
technological competencies and sensibility for the necessities and expectations of
the users. The software engineering essence lies upon the capacity to put in practice
the most appropriate sets of cooperative, coordinated and concurrent technological
and methodological approaches for each software development reality.

Software is the principal artefact that results form the software engineering
process. The chapter presents the most relevant software characteristics and defines
and presents the various types of software systems. The software systems are devel-
oped to satisfy the stakeholders needs. The domain of a software system can be a
business area, a collection of problems, or a knowledge area.

The chapter ends with a presentation and characterisation of the most popular
process models used to guide the development teams in the organisation of their
tasks. There is no unique development process model that is adequate for all the
projects, which means that it is very important to choose the one that best adjusts to
each particular context.

Further Reading

The literature in software engineering is quite extensive. There are some books that
try to make a complete coverage of all the discipline. To start with, there are some
works considered as true classics, like the encyclopedia-like books written, over
the past years, by Sommerville (2010) and Pressman (2009). These books have go
through several editions (always with updates in relation to the previous version),
in the case of Pressman every 5years approximately, which demonstrates the highly
accelerated dynamics of this discipline. Another interesting book, written by Pfleeger
and Atlee (2009), focuses on modelling and agile methods. Another landmark book
in this area is the work authored by Ghezzi et al. (1991), which, despite its generalist
nature, is quite concise and easy reading.

The history of software is also very interesting. Two recommended sources are
Ceruzzi (1998, Chap.3) and Campbell-Kelly (2003). Broy and Denert (2002) edited
a book with a compilation of some of the scientific articles that, since the 1950s,
changed somehow software engineering. This book constitutes a compilation of
undeniable rigour and historical value, even though one can contend that “the” soft-
ware engineering pioneers are not necessarily just the authors included in the book.
An extremely interesting essay about the differences between software engineering
and other more traditional engineering fields can be found in Beizer (2000).

Software engineering education is addressed by various authors, for example,
Parnas (1990, 1999), Shaw (1990, 2009), Osterweil (2007). It is also relevant to
read the curricula recommendations for software engineering (ACM/IEEE-CS 2004,
Pyster 2009).

In the field of the software process, it is recommended that one reads the works
about the software development process improvement, like, for instance, (Humphrey



44 2 Software Engineering

2005). The book written by Krutchen (2003) presents the unified process. With
respect to agile methods, it is suggested that one reads books related to eXtreme
Programming (XP) (Beck 2000) and Scrum (Schwaber and Beedle 2001).

Exercises

Exercise 2.1 Indicate the 15 KAs that constitute the software engineering body of
knowledge, according to the SWEBOK guide.

Exercise 2.2 Identify which elements are included in a software product.

Exercise 2.3 A mobile application is a software application, developed to run on a
smartphone or other handheld device. Identify the most important characteristics of
a mobile application, according to Salmre (2005, Chap.2).

Exercise 2.4 (Naveda and Seidman 2006, pp. 23–24) While developing a software
application, two similar defects were detected: one during the requirements phase
and another one during the implementation phase. Which of the following sentences
is more likely to be true?

1. The most expensive defect to repair is the one detected in the requirements phase.
2. The most expensive defect to repair is the one detected in the implementation

phase.
3. The repair cost of the two defects tends to be similar.
4. There is no relation between the phase in which a defect is detected and the repair

cost.

Exercise 2.5 Point out some advantages that result from using an incremental and
iterative process in comparison with a sequential process that follows the waterfall
model.



http://www.springer.com/978-3-319-18596-5


	2 Software Engineering
	2.1 Contributions for Requirements Engineering
	2.2 Characterisation of the Discipline
	2.3 Software
	2.3.1 Definition of Software
	2.3.2 Software Systems and Products
	2.3.3 Domains

	2.4 Models for the Development Process
	2.4.1 Waterfall
	2.4.2 Incremental and Iterative
	2.4.3 Transformational
	2.4.4 Spiral

	2.5 Summary


